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The influence of surfactant on the breakup of a prestretched bubble in a quiescent
viscous surrounding is studied by a combination of direct numerical simulation and
the solution of a long-wave asymptotic model. The direct numerical simulations
describe the evolution toward breakup of an inviscid bubble, while the effects of small
but non-zero interior viscosity are readily included in the long-wave model for a fluid
thread in the Stokes flow limit.

The direct numerical simulations use a specific but realizable and representative
initial bubble shape to compare the evolution toward breakup of a clean or surfactant-
free bubble and a bubble that is coated with insoluble surfactant. A distinguishing
feature of the evolution in the presence of surfactant is the interruption of bubble
breakup by formation of a slender quasi-steady thread of the interior fluid. This
forms because the decrease in surface area causes a decrease in the surface tension
and capillary pressure, until at a small but non-zero radius, equilibrium occurs between
the capillary pressure and interior fluid pressure.

The long-wave asymptotic model, for a thread with periodic boundary conditions,
explains the principal mechanism of the slender thread’s formation and confirms,
for example, the relatively minor role played by the Marangoni stress. The large-
time evolution of the slender thread and the precise location of its breakup are,
however, influenced by effects such as the Marangoni stress and surface diffusion of
surfactant.

1. Introduction
The surface-tension driven motion of a stretched droplet or liquid thread suspended

in an ambient fluid is a fundamental process in fluid dynamics, and arises in a broad
array of applications including emulsion formation, fluid mixing and fibre coating.
The efficiency of dispersing two immiscible fluids, for example, depends critically on
how readily an elongated drop or fluid thread disintegrates into smaller droplets,
see for example Janssen, Boon & Agterof (1994, 1997). Reviews by Stone (1994),
Eggers (1997), Quéré (1999) and Basaran (2002), describe recent investigations on
the surface-tension-driven instability in droplets, jets and coatings, and discuss their
scientific and technological applications.
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Theoretical work on the dynamics of liquid threads goes back to the investigations
of Rayleigh (1879, 1892), who performed a linear stability analysis for both inviscid
and viscous threads surrounded by an inviscid ambient fluid. Rayleigh found that
infinitesimal disturbances to a cylindrical thread grow provided the wavelength of the
perturbation is greater than the circumference of the thread. This analysis was later
generalized by Tomotika (1935) to include the effect of a viscous surrounding fluid.
The outer fluid is found not to affect the criterion for instability, but modifies its
growth rate.

Nonlinear evolution of a fluid thread eventually leads to its breakup into droplets.
Many of the recent studies of the development and breakup of a liquid thread
have been motivated by the desire to understand the space–time singularity that
results when the radius of the thread tends to zero. Theoretical studies of this topic
often make use of one-dimensional or long-wave approximations to the governing
equations that are based on the assumption that the thread is long and slender; see e.g.
Eggers & Dupont 1994; Papageorgiou 1995; Brenner, Lister & Stone 1996. When the
viscosity of the interior thread is sufficiently large, the dynamics in a neighbourhood
of pinch-off is found to be universal, that is, independent of initial and boundary
conditions. In this case, a combination of careful numerical studies, scaling theories
and local similarity solutions has shed much light on the nature of the singularity
at pinch-off (see e.g. Eggers 1993; 1995 and references therein, Lister & Stone 1998;
Zhang & Lister 1999; Sierou & Lister 2003; McGough & Basaran 2006). In contrast,
the dynamics close to pinch-off for an inviscid thread surrounded by a viscous fluid
depends on the specific initial and boundary conditions (see Doshi et al. 2003; Suryo,
Doshi & Basaran 2004).

Surfactants, or surface contaminants, change the interfacial properties of a fluid
and are sometimes added to two-phase mixtures or emulsions to control features such
as droplet size. The surface tension of a surfactant-coated interface depends on the
local concentration of surfactant, which changes owing to flow, surface deformation
and surface diffusion of the contaminant. Further, surface tension gradients caused by
variations of surfactant concentration give rise to a tangential, or Marangoni, stress
acting on the interface, which can in turn substantially alter interfacial evolution and
flow.

Experiments show that surfactant can have a significant effect on the stability of a
liquid thread (Burkholder & Berg 1974; Zhang & Basaran 1995). A comprehensive
linear stability analysis of the influence of surfactant on the evolution of a cylindrical
viscous thread surrounded by another viscous fluid was given by Hansen, Peters &
Meijer (1999), following an earlier analysis of Whitaker (1976) on a thread in a
passive inviscid surrounding. These studies found that surfactant slows the growth
rate of disturbances, owing to the lower interfacial tension and to the surface-
stiffening or immobilizing effect of Marangoni stress. Timmermans & Lister (2002)
revisited the linear stability of a viscous thread coated with insoluble surfactant
and clarified the dominant physical balances in certain limits. They also formulated
one-dimensional models that describe the nonlinear development of the thread, and
presented a simple scaling theory which shows that, close to breakup, surfactant is
swept away from the pinching region and thus has little effect on the dynamics at the
pinch point. In a parallel study, Craster, Mater & Papageorgiou (2002) derived and
studied computationally the nonlinear long-wave evolution equations. They confirmed
numerically that surfactant delays pinching, and that as pinchoff is approached, the
pinching structures asymptote to those for clean threads. This conclusion has been
borne out by McGough & Basaran (2006).
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There have been several numerical studies of the influence of surfactant on the
deformation and breakup of a drop in an extensional flow, although these are limited
to zero Reynolds number. Stone & Leal (1990) consider the case where the ratio
λ= µi/µ of interior to exterior viscosity is unity. Milliken, Stone & Leal (1993)
extend these calculations to a wider viscosity range, 0.1 � λ � 10, and to other flow
conditions. They include an example of the evolution of a prestretched drop with
λ= 1 in a quiescent flow that shows the development of smaller droplets separated
by long, slender, quasi-stable filaments or threads. The current paper considers such
evolution for zero and small viscosity ratio in much greater detail. Kwak & Pozrikidis
(2001) present numerical calculations of the influence of surfactant on an infinite
thread evolving in Stokes flow, although they mainly focus on viscosity ratios λ> 1.
Ambravaneswaran & Basaran (1999) and Liao, Franses & Basaran (2006) solve
the full Navier–Stokes equations numerically to investigate the effect of insoluble
surfactant on the pinch-off of a stretched liquid bridge in an inviscid surrounding.
Jin, Gupta & Stebe (2006) study numerically the effect of soluble surfactant on the
detachment of a viscous drop ejected from a nozzle into a viscous fluid.

Previous studies of surfactant-coated drops and threads have focused mainly on
viscous fluids in a passive inviscid surrounding, or on viscosity matched liquids. A
major aim of this paper is to consider the influence of surfactant on the evolution
of bubbles and threads for zero and small viscosity ratio λ= µi/µ in greater detail.
The case λ=0 is of particular interest, in view of the result of Doshi et al. (2003)
that the morphology at pinch-off of a clean or surfactant-free inviscid thread can be
controlled by suitable choice of initial and boundary conditions.

Our investigations include numerical simulations of the Navier–Stokes equations
for a slender inviscid bubble evolving in a viscous exterior fluid when an insoluble
surfactant is present on the bubble surface. We also derive one-dimensional long-wave
equations that describe the deformation of an inviscid or slightly viscous thread with
surfactant. The long-wave model provides insight into the formation and shape of
quasi-stable threads that are observed in the numerical simulations of a collapsing
bubble, and allows us to gauge the relative magnitude of the different physical effects
that act during the evolution. For the relatively small values of λ considered here, and
for small surface diffusion of surfactant, pinching solutions to the long-wave model
show that surfactant is not swept away from the pinch point, as is the case for a
viscous thread in a passive inviscid surrounding (Craster et al. 2002; Timmermans &
Lister 2002; McGough & Basaran 2006). The presence of surfactant therefore has the
potential to affect local similarity scalings that may occur in a neighbourhood of pinch-
off. However, the emphasis here is on the overall morphology of the evolving thread,
rather than on uncovering detailed structure in the neighbourhood of the pinch point.

The rest of the paper is organized as follows. The governing equations are given
in § 2, where the numerical method is briefly described. In § 3, the results of direct
numerical simulation with Reynolds number less than one are presented for the
collapse of an elongated bubble with an inviscid interior in a quiescent flow, showing
the formation and evolution of a thin thread when the interface is coated with
insoluble surfactant. In § 4, a long-wave asymptotic model, which is motivated by the
results of the direct numerical simulations, is derived for the evolution of a thread
of either small or zero viscosity in the Stokes flow limit. Long-wave equations in the
same small viscosity ratio limit have been given previously without surfactant and via
more or less heuristic reasoning by Sierou & Lister (2003) and in the inviscid limit by
Doshi et al. (2003). The derivation here is more systematic, but can be omitted on a
first reading, and indicates how higher-order effects might be included in a long-wave
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model if desired. The results of numerical solution of the long-wave model are
given in § 5. These show a striking similarity with the results of the direct numerical
simulations of § 3 in the formation and initial development of a thread of inviscid
interior fluid when surfactant is present. In § 6, further detail of the evolution toward
pinch-off is considered, as predicted by both the direct numerical simulations and
the long-wave model. It is concluded that transport of surfactant, either by advection
along the interface or surface diffusion, is critical in determining the precise location
of the point at which the thread first pinches off. Concluding remarks are given in § 7.

2. Governing equations
We consider an incompressible, inviscid, neutrally buoyant bubble that is suspended

in a viscous Newtonian fluid. It is known that a surfactant-free slender bubble with
an initial profile that has a local minimum away from its endpoints subsequently
develops a waist or neck there, the radius of which decreases monotonically and
tends to zero at finite time, so that the bubble pinches off under the influence of
surface tension see e.g. Doshi et al. 2003; Suryo et al. 2004. We study how surfactant
influences the deformation, the development of a thin neck and thread, and the
evolution toward pinch-off.

The governing equations for the flow in the exterior fluid are the incompressible
Navier–Stokes equations

Re(∂t + u · ∇)u = −∇p + ∇2u, (2.1)

∇ · u = 0, (2.2)

written in non-dimensional form. The exterior fluid has constant viscosity µ and
constant density ρ. Lengths are non-dimensionalized by the radius a of an undeformed
spherical bubble of the same volume, and the velocity u is made non-dimensional
by a surface, tension-driven value U = σ ∗/µ, where σ ∗ is the surface tension of a
clean or surfactant-free bubble. Time is then made non-dimensional by a/U , while
the pressure both inside the bubble pi and outside the bubble p are made non-
dimensional by µU/a. The Reynolds number in (2.1) is Re = Ua/ν = σ ∗aρ/µ2, where
ν is the kinematic viscosity of the exterior fluid (note that Re is the inverse square
of the Ohnesorge number which is often used in the literature). Since the viscosity of
the interior fluid is neglected, the pressure inside the bubble pi =pi(t) is a function
of time alone, independent of position x.

The boundary conditions at the bubble surface are a balance of stress and the
kinematic condition. The balance of stress at the interface requires that

(pi − p) n + 2e · n = σ (κθ + κz)n − ∇sσ (2.3)

on S, in non-dimensional form, where e is the rate of strain tensor, n is the outward
unit normal oriented from the interface to the surrounding fluid, κθ and κz are the
principal normal curvatures of S (taken positive for a concave inward surface), and
∇s = ∇−n(n · ∇) is the surface gradient operator. The non-dimensional surface tension
is σ , and the last term in (2.3) is the Marangoni stress, which is zero for a clean or
surfactant-free interface. In the presence of a non-uniform distribution of surfactant,
however, the surface tension σ varies and the Marangoni stress is non-zero.

The kinematic condition specifies that the interface S, with equation F (x, t) = 0,
moves with the normal velocity of the neighbouring fluid, and is given by

(∂t + u · ∇)F = 0 (2.4)

on S.
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When surfactant resides on the interface with a surface concentration Γ , the surface
tension is reduced from its surfactant-free or clean value. A model for the dependence
of interfacial surface tension on surfactant concentration that incorporates a nonlinear
dependence of σ on Γ and the fact that there is an upper bound to the surfactant
concentration, denoted by Γ∞, is the Langmuir equation, which has dimensionless
form

σ = 1 + E ln(1 − Γ ). (2.5)

The surface tension σ in (2.3) and (2.5) is non-dimensionalized by its clean or
surfactant-free value σ ∗, and the surfactant concentration Γ is made dimensionless
by Γ∞. The parameter E is the elasticity number, and is given by E = RgT Γ∞/σ ∗, where
Rg and T are the gas constant and the uniform temperature. The elasticity number
gives a measure of the sensitivity of surface tension to changes in the concentration
of surfactant on S.

The Langmuir equation of state has been shown to provide a good fit to
experimental data for many fluid–surfactant systems (Chang & Franses 1995) up
to values of Γ referred to as the critical micelle concentration (CMC), at which the
integrity of the surfactant monolayer is compromised by micelle formation. This leads
to a maximum reduction in surface tension from the surfactant-free value σ ∗ to that
attained at CMC σmin, the value of which varies for different fluid–surfactant systems.
For example, at an air–water interface with sodium dodecyl sulphate surfactant the
reduction σmin/σ

∗ is modest, close to a half, while for some systems with an aqueous-
hydrocarbon interface and specific surfactants, the maximum reduction σmin/σ

∗ is
enhanced to a seventh (Anna & Mayer 2006) or a tenth (De Bruijn 1993).

The above results are reported under equilibrium conditions. Under dynamic
conditions, the maximum reduction in surface tension can be further enhanced
by a factor that is of the order of a half, owing to the relaxation time associated
with restoring the surfactant monolayer to its equilibrium state. An example of such
a reduction for dynamic surface tension data with insoluble surfactant, where the
relaxation time is of the order of three hours and the dynamic data are approximated
well by the Langmuir equation up to (dynamic) CMC, is given by Liao et al. (2006).

The evolution of the surface concentration of surfactant Γ is governed by an
advection-diffusion equation, which has been derived for a general parametric
representation of the interface x = X(ξ , t) in Wong, Rumschitzki & Maldarelli (1996),
namely,

∂Γ

∂t

∣∣∣∣
ξ

− ∂X
∂t

∣∣∣∣
ξ

· ∇sΓ + ∇s · (Γ us) + Γ (κθ + κz) u · n =
1

Pes

∇2
sΓ, (2.6)

for an insoluble surfactant, where the surface velocity us = u−(u · n)n is the projection
of u onto the tangent plane, Pes = Ua/Ds is the Péclet number for surface diffusion
of surfactant and Ds is the surface diffusivity. The first two terms on the left-hand
side, containing the time derivatives, taken together are the time derivative ∂tΓ |n at a
point on S that advances with the interface along the normal direction.

Since the interior fluid is incompressible, the total bubble volume V is conserved,
and for an inviscid bubble this must be imposed as a further condition that is required
in order to close the system, and which implies

V = 4
3
π. (2.7)
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A second conserved quantity is the total amount of surfactant, which satisfies the
relation ∫

S

Γ dS = 4πχ, (2.8)

where χ = Γi/Γ∞, and Γi is an average over the bubble surface of the initial surfactant
concentration. Equation (2.8) is used as a check on the accuracy of the numerical
simulations.

In what follows, the bubble shape and flow field are assumed to be axisymmetric
in a cylindrical polar coordinate system (r, θ, z) in which the bubble axis is aligned
with the z-axis. The bubble is also assumed to be symmetric about the plane z =0,
and its profile has radius r =R(z, t).

2.1. Note on the numerical method

The numerical method uses an arbitrary Lagrangian–Eulerian (ALE) moving mesh
to solve the axisymmetric moving-boundary problem. It employs a body-fitted grid,
in which the interface is a line of the grid, and dynamic boundary conditions at
the interface are incorporated accurately within a finite-volume formulation. ALE
methods were first developed in the context of finite-difference and finite-volume
methods. Hirt, amsden & Cook (1974, reprinted 1997) summarizes some early work,
whereas Donea, Giuliani & Halleux (1982) and Belytschko, Kennedy & Schoeperle
(1980) describe extensions in the finite-element setting. A more recent review is
given by Donea & Huerta (2003). ALE methods with finite elements and novel
meshing strategies have been successfully applied to study drop breakup (see, e.g.
Wilkes, Philips & Basaran 1999; Notz, Chen & Basaran 2001; Doshi et al. 2003, and
references therein).

Since the boundary conditions at the interface are expressed naturally in terms of
primitive variables, i.e. velocity and pressure, the ALE method used in this study,
which was developed by Li (2006), uses a discretization of the pressure at the
centre of a computational cell while the velocity is discretized at the cell corners.
In this formulation, boundary conditions on the pressure and velocity gradient
immediately outside the interface S are evaluated directly from the stress-balance
boundary condition (2.3), and this is similar to the treatment by Ryskin & Leal
(1984) in the collocated-grid method. Mass conservation is applied at the cell centre,
and fluxes are evaluated by interpolation from the velocity at the cell corners. The
resulting nonlinear system of equations expressing overall conservation of mass and
momentum is then solved by a projection method. In this way, numerical boundary
conditions at the moving interface are evaluated directly from the stress-balance
boundary conditions, so as to facilitate improved accuracy in the solution for the
exterior flow field.

The interface S is represented by marker points r i , i = 1, . . . , N which are updated
with the normal velocity of S and cubic splines are used to obtain a smooth
representation of the surface and to compute its curvature accurately.

Equation (2.6) for the concentration of surfactant Γ is solved using a fractional
step, finite-volume method, as in Li (2006). In the first part of the step, the equation

∂Γ

∂t

∣∣∣∣
n

+ ∇s · (Γ us) =
1

Pes

∇2
sΓ (2.9)

is solved using a finite-volume method. Denoting the average of Γ on a surface
element [r i , r i+1] by Γi+1/2 =

∫ ri+1

ri
Γ dS/	Si+1/2, where 	Si+1/2 is the surface area

of the element, we update Γi+1/2 using a first-order upwind scheme to compute the
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convective flux(
Γ

n+1/2
i+1/2 − Γ n

i+1/2

)
	Sn

i+1/2

2π	t
+ (RΓ us)

n
i+1 − (RΓ us)

n
i =

1

Pes

[(
R

∂Γ

∂s

)n

i+1

−
(

R
∂Γ

∂s

)n

i

]
,

(2.10)

where us = |us |, R is the axisymmetric interface radius, and s is arclength along r = R.
The second part of the step updates Γ according to the motion of the interface in
the normal direction, that is,

∂Γ

∂t

∣∣∣∣
n

+ Γ (κθ + κz) u · n = 0. (2.11)

During this part of the step, the total surfactant within each surface element
∫ ri+1

ri
Γ dS

is conserved, so that the new average concentration is computed as

Γ n+1
i+1/2 = Γ

n+1/2
i+1/2 	Sn

i+1/2

/
	Sn+1

i+1/2, (2.12)

once the marker positions have been updated and the new surface area 	Sn+1
i+1/2 has

been found. The numerical scheme therefore conserves the total amount of surfactant
on S up to round-off error. The flow solver is second-order accurate in space, and
the discretization of the equation for Γ in (2.10) is first-order accurate in space. The
time update is by explicit Euler and is first-order accurate.

The method has been validated on several problems of bubble dynamics for both
steady and unsteady flows, and good agreement with other theoretical, numerical and
experimental results has been obtained. See Li (2006) and Li et al. (2005) for further
details of the numerical method and its validation.

3. Results of numerical simulations
The initial profile for the simulations consists of a dumb-bell shaped bubble which

is symmetric in the plane z = 0, in addition to the axisymmetry about the axis r = 0.
The choice of initial data is motivated by the result (Doshi et al. 2003) that a clean
slender bubble with a local minimum away from its endpoints will contract and pinch
off in finite time.

The particular dumb-bell shape used here is achieved by straining a spherical
bubble that is centred at the origin and placed in the extensional flow

u = Ca
(
zez, − 1

2
rer

)
, (3.1)

where Ca = Ga/U is the capillary number and G is the strain rate of the imposed
flow. During the straining motion the surface tension is constant, with E = 0 in
(2.5), so that the interface evolves as though it is free of surfactant. The extent of
deformation is characterized by the Taylor deformation number

D =
L − B

L + B
, (3.2)

where L and B are, respectively, the bubble half-length in the z-direction and the
minimum radius in the r-direction. The initial profile for the simulations below has
the bubble shape that is formed under these conditions with the arbitrary choice
Ca = 5.87 and Re = 0.17 when the deformation number attains the value D = 0.91
and the aspect ratio is approximately 0.05, at which instant, time is set to t = 0. This
profile R(z, 0) has a minimum radius or neck at z = 0, and is shown by the dashed
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Figure 1. (a) The dashed curve shows the bubble shape r = R(z, t) at time t = 0, and the solid
curve shows the shape of the bubble just before pinch-off when it is free of surfactant and

Re = 0.17. The bubble profile at pinch-off for |z| <∼ 2 is nearly independent of the Reynolds

number for Re
<∼ 1. (b) Log–log plot of the minimum radius R(0, t) versus time to pinch-off

tc − t (markers), where tc is the pinch-off time. The solid line, shown for comparison, has slope
of 1. (c) Bubble neck radius R(0, t) as a function of time for values of the Reynolds number
Re � 0.40, showing that the evolution is nearly independent of Re for Re

<∼ 0.25.

curve in figure 1(a). The strain rate and fluid velocity are then instantaneously set to
zero, so that Ca = 0 and u(x, 0) = 0, and the bubble evolves in a quiescent flow for
times t > 0. At the low Reynolds numbers considered, there is negligible difference in
the evolution if at t = 0 the imposed flow is set to zero while the fluid velocity for
finite x is continuous.

For a bubble of air in glycerine, this profile would be attained by straining a
spherical bubble of radius a � 1.16 cm at a strain rate G � 13.64 s−1.

3.1. Evolution of a clean bubble

The evolution of a clean or surfactant-free bubble serves as a benchmark for
comparison and study of the influence of surfactant. A comprehensive investigation
of the evolution of a clean bubble is given in Doshi et al. (2003), and we summarize
the main features here. When the bubble profile described above evolves in a quiescent
flow for t > 0, in the surfactant-free state the minimum or neck radius R(0, t) decreases
monotonically in time, and the bubble pinches off at z = 0 with a locally parabolic
minimum at an approximate time t = 1.0 for Re =0.17. The bubble profile immediately
before pinch-off is shown by the solid curve in figure 1(a), for which the Reynolds
number takes the same value Re = 0.17, used in setting up the initial profile. Figure 1(b)
shows a log–log plot of the minimum radius as a function of time tc − t to breakup,
where tc is the pinch-off time. The markers approach a slope of 1, indicating that the
thread pinches off with constant velocity. Near pinch-off, the dominant force balance
is between normal viscous stress, internal pressure, and capillary pressure (Doshi
et al. 2003; Suryo et al. 2004), as is seen from (4.50) in the long-wave analysis of § 4.

The qualitative features of pinch-off for a clean bubble are independent of Re for

values Re
<∼ 1. Pinch-off always occurs at z = 0 with a single minimum that is locally

parabolic. The time at which pinch-off occurs decreases slightly as Re is decreased,
as indicated by the evolution of the neck radius R(0, t) shown in figure 1(c) for
Reynolds numbers in the range from 0.06 to 0.4. The trends in the figure suggest that
the pinch-off time converges to a fixed value as Re → 0. The evolution of R(0, t) is
seen to be nearly independent of t for Re below Re � 0.25. More importantly, the



Influence of surfactant on bubble deformation and breakup 315

0.61

t = 0 t = 0.99

t = 1.60 t = 2.20

t = 2.80 t = 3.51

0

0
0.61

–4.65 4.65

0.61

0

0
0.61

–4.65 4.65

0.61

0

0
0.61

–4.65 4.65

0.61

0

0
0.61

–4.65 4.65

0.61

0

0
0.61

–4.65 4.65

0.61

0

0
0.61

–4.65 4.65

Figure 2. The formation of an inviscid thread due to insoluble diffusion-free surfactant. The
initial dumb-bell shape is the same as in figure 1(a). The bubble collapses radially near z = 0 to
form a thin thread, which lengthens as its surfactant concentration approaches the saturated
value Γ∞.

final stages of evolution before pinch-off do not show a change in behaviour from
a Stokes regime to an inertial viscous regime, as has been shown to occur when a
large-viscosity interior fluid is present. The reason for the difference is that, in the
latter case, large axial velocities develop in the viscous interior fluid, and inertial terms
cannot be neglected in the final stage of pinch-off. This transition from the Stokes
to the inertial viscous regime has been shown experimentally in Rothert, Richter &
Rehberg (2001) and numerically for a one-dimensional long-wave model in Craster
et al. (2002). Here the interior fluid is inviscid.

The computations are stopped when the neck radius R(0, t) decreases below 10−3.
The results in figures 1(a) and 1(b) are shown for computations with 128 markers in
a quarter-plane, r > 0, z > 0, and are identical to within the resolution of the figures
for computations with 64 markers.

3.2. Thread formation with insoluble surfactant

When the same initial bubble shape of figure 1(a) is used but the interface is
covered with an initial distribution of insoluble surfactant that is diffusion-free,
so that Pes = ∞, a clear difference in evolution toward pinch-off is found. This is
distinguished by the formation of a long thin thread of the interior fluid.

A typical example of this is shown in figure 2. Initially, the bubble collapses in
a neighbourhood of the minimum to form a short neck near z = 0, similar to the
surfactant-free evolution of figure 1. In this early stage of the process, the capillary
pressure, defined as pc = σ (Γ )/R, is greater than the internal pressure pi near z = 0.
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Figure 3. Contraction rate ∂R(0, t)/∂t (dashed line) and the expression on the right-hand
side of (3.3) at z = 0 (solid line) versus time.

However, as the neck forms, the radial contraction and local decrease of surface area
causes a high concentration of surfactant to develop around the bubble neck, which
greatly decreases the surface tension there. The surface tension is found to decrease
sufficiently rapidly relative to the decrease in neck radius that the capillary pressure
approaches the pressure of the internal fluid before the neck radius tends to zero. The
decrease in neck radius is interrupted when these two forces balance, before pinch-off
can occur. We note that the presence of a viscous interior fluid can also cause a trans-
ition from a parabolic to a thin thread profile (Doshi et al. 2003; Suryo et al. 2004).

At later times, the neck lengthens to form a thin thread along the bubble’s axis of
symmetry, in which the capillary pressure and internal pressure are nearly equal. At
its ends, the thread adjoins two parent bubbles via bridges.

The balance of internal and capillary pressures in establishing a steady thin thread
is justified in more detail in § 4, where a long-wave asymptotic model is introduced
for the evolution of a thread of interior fluid. There it is shown that if ε is the small
aspect ratio of the initial thread radius to the axial half-wavelength of a periodic
disturbance, the ε-scaled thread radius r = εR(z, t) satisfies the equation

∂R

∂t
=

R

2

(
pi − σ (Γ )

R

)
, (3.3)

which clearly shows that the thread radius is steady when the internal and capillary
pressure are equal.

Figure 3 shows the contraction rate at the neck (∂R/∂t)(0, t) (dashed line) together
with the right-hand side of (3.3) evaluated at z = 0 (solid line) as computed from
the simulation data. The two curves are close for all times, indicating that the neck
radius follows the evolution given by the simplified equation (3.3). The contraction

rate is near zero, or more precisely it is less than 10−2, for times t
>∼ 1.0, when a

quasi-steady thin thread forms. In contrast, for a clean or surfactant-free interface,
the interior pressure cannot equal the large capillary pressure, which grows as 1/R,
and the thread is driven to pinch-off.
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Figure 4. (a) Radius R(0, t) at the neck as a function of time. Solid line, with surfactant,
showing that pinch-off at the neck is interrupted; dashed line, without surfactant. (b) Bubble
profiles r = R(z, t). The thick solid line shows the surfactant-covered profile with an elongated
thread at time t = 3.51 and the thin solid line shows the clean bubble at time t = 0.97 just
before it pinches off at z = 0. The dashed line shows the initial bubble profile. (c) Surfactant
distribution at t = 0 (thin solid line), and surfactant distribution (thick line) and surface tension
(broken line) at t = 3.51.

Simulations have been carried out with both uniform and non-uniform surfactant
distributions at time t = 0. Although different equilibrium bubble shapes occur for
different values of the total amount of surfactant on the bubble surface, results from
a large number of simulations show that the spatial distribution of surfactant in
the initial conditions is not crucial to the phenomenon of thread formation, which
is found to be robust. In the data of figure 2, the distribution of Γ at t = 0, Γi , is
uniform with Γi = 0.4, and the evolution of the bubble shape for t > 0 is computed
with E = 0.19 and Re = 0.17.

Further contrast between the evolution for clean and surfactant-covered bubbles
is shown in figure 4, using data from the simulations of figure 2. Figure 4(a) shows
the bubble radius R(0, t) at the mid-point of the bubble profile z = 0 versus time t .
The radius of the clean bubble, which is shown by the dashed curve, pinches off at
t � 1.0. Although the radius of the surfactant-covered bubble, shown by the solid
curve, is nearly identical in the early stage of its evolution, just before t � 1.0 its
motion is suddenly interrupted when the radius reaches a near-equilibrium value
of R(0, t) � 0.08. This is the time at which the capillary pressure and the interior
pressure balance at z = 0, and marks the onset of formation of the thin thread.
Figure 4(b) shows the different bubble profiles. The shape of the clean bubble with
its locally parabolic minimum (or neck) immediately before pinch-off is given by the
thin solid line, whereas the thick solid line shows the surfactant-covered bubble with
a well-developed thin thread at time t = 3.51, when it has half-length l � 1.8. At
this instant, the thread aspect ratio is approximately 0.04. The thread radius is not
constant in z, and in particular as the thread elongates by radial contraction of the
adjacent parent bubble surface, it begins to narrow at the ends, as is also seen in
figure 2. Simulations with Pes large but finite do not differ appreciably from the
results shown with Pes = ∞. For the surfactant-covered bubble, figure 4(c) shows the
initial distribution of surfactant Γi = 0.4, given by the thin solid line, whereas at time
t = 3.51 the surfactant distribution is given by the thick solid line and the surface
tension is given by the broken line.

The bubble profile at time t = 3.51 is nearly steady, as is the thread radius R(z, t)
at fixed z throughout its formation. Figure 4 shows that the surfactant coverage at
all points on the thread is within 1% of its maximum value, at which σ = 0, which
is Γ = 0.9948 with the value of E = 0.19 used in the simulation. The surface tension
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Figure 5. Thread evolution for the initial conditions, parameters, and times of figure 2.
(a) Close-up of the developing thread profile. (b) The surfactant concentration Γ (z, t). (c) The
corresponding surface tension σ (z, t).

on the thin thread varies from 0.2 at its centre to 0.1 at the constriction. As the thin
thread evolves toward pinch-off, the surface tension near the pinch-off point may
decrease to values below which the Langmuir equation of state is valid. We return to
this point at the end of § 5.1.1.

A magnified view of thread evolution for the initial conditions and parameters of
figure 2 is presented in figure 5. Figure 5(a) shows the interfacial profiles at a sequence
of times, and shows that the thread lengthens by contraction of the adjacent parent
bubble. The thin thread is nearly steady; for example, on the interface at t =1.6 there
are points on the thread at fixed z with |z| <∼ 0.5 for which ∂R/∂t � 0, while the adja-
cent parent bubble surface contracts, causing the thread to elongate. Figure 5(b) gives
the surfactant concentration Γ at the same times as the profiles shown in figure 5(a),
and figure 5(c) shows the corresponding surface tension σ . The value of surface
tension at the onset of thread formation is about σ = 0.25. As the thread elongates,
the axial propagation rate of the thread neck junction or constriction decreases.

We have performed simulations for a range of initial surfactant concentration with
the elasticity parameter E in the physically representative interval 0.05 <E < 0.4 (as
determined by the experimental data in, for example, Chang & Franses 1995), and
find the thin thread typically forms when σ is reduced by a factor of 3 to 10. For
example, figure 6 shows σ (z =0) at thread formation versus Γi , with other parameters
as in figure 2. Thread formation is defined to occur when the capillary pressure σ/R is
within 1 % of the interior pressure pi(t), at which point the radial thread velocity as
determined from the right-hand side of (3.3) is less than 0.01. The curves in the figure
are obtained from direct numerical simulation and from solutions to the long-wave
model of § 4, for similar initial data. The observed values of σ at thread formation are
generally within the range of applicability of the Langmuir equation, as noted earlier.

Simulations for the collapse of a surfactant-coated bubble with Re < 1 show no
indication of a change in behaviour from a Stokes regime to an inertial viscous regime
as pinch-off is approached when the interior fluid is inviscid, as noted earlier in the
discussion of pinch-off in the surfactant-free case (figure 1(b)).

4. Long-wave asymptotic model for a slender thread
The formation of a small-aspect-ratio thread during the collapse of an extended

bubble that is observed in the simulations of the previous section motivates us to
consider an asymptotic model using a long-wave approximation of the governing
equations. In this section we derive such a model, and, since the generalization
is straightforward, we include the effect of a small but non-zero viscosity of the
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Figure 6. Surface tension σ (z = 0) at thread formation versus Γi , with other parameters as
in figure 2. Thread formation is defined to occur when σ/R − pi = 0.01. �, direct numerical
simulation with initial conditions as in figure 2; ×, crosses long-wave model of § 4, for similar
initial data.

interior fluid. However, the Reynolds number Re must be set to zero to obtain the
simplifications of Stokes flow that are used in the analysis.

Similar models have been considered previously, and the reader may choose to
omit the derivation and proceed directly to the result, which appears at (4.52)–(4.55).
For example, Sierou & Lister (2003) have thoroughly investigated the dynamics of
a slightly viscous thread that is free of surfactant, and the model equations they
introduce are equivalent to (4.52) and (4.53) with the surface tension σ0 constant.
Doshi et al. (2003) and Suryo et al. (2004) have considered the limit of an inviscid
interior, for which the model is given by (4.52) and (4.62).

Much of the physical insight for these models can be traced to the observation of
Taylor (1964), that for a nearly inviscid interior fluid the motion of the exterior viscous
fluid is approximated well by purely radial collapse and dilation. In a cylindrical
geometry, the radial velocity near the interface is given by u � 2g(z, t)/r where g(z, t)
is a mass source strength, while from the kinematic condition on the interface u � ∂τR

where τ = t/ε is a rescaled time. The motion of the interior fluid is found by a small
aspect ratio or lubrication approximation to be Poiseuille flow. When applied to the
conditions for continuity of velocity and normal stress at the interface this implies
that its evolution is given by (4.52) and (4.53).

In the presence of insoluble surfactant, it turns out that this insight also provides a
leading-order approximation to the evolution of surfactant concentration, which with
an equation of state gives the closed system (4.52) to (4.55). The derivation below
attempts to make the approximation procedure systematic, and confirms that with or
without surfactant the tangential stress balance plays a minor role. In other words,
despite the presence of surfactant, the Marangoni stress is a higher-order effect, and
the role of the Marangoni stress, to reduce gradients in surfactant concentration, is re-
placed in the long-wave model that is presented here by surface diffusion of surfactant.

Complications introduced by the presence of rounded bubble end-caps, at which
the small-slope assumption fails, are avoided by considering a periodic thread as
a model of the bubble midsection. We assume the average initial radius b of the
thread to be much smaller than the fixed half-length l, and define the small parameter
ε = b/l � 1.

In this section, all lengths are made dimensionless by the half-length l, with the
exception of the radial coordinate r inside the thread, which is non-dimensionalized
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by b. This is equivalent to introducing a local coordinate r̃ = O(1) such that r = εr̃ .
Since the instability is capillary driven, we introduce a rescaled interior pressure
p̃i = εpi = O(1). This is equivalent to non-dimensionalizing the interior thread pressure
by σ ∗/b, instead of σ ∗/l. The remaining non-dimensionalization is the same as in § 2.
With these scalings the interface is given by

r = εR̃(z, t) or equivalently r̃ = R̃(z, t), (4.1)

where R̃ = O(1).
The formulation follows that of § 2, with Re set to zero in (2.1). An i-subscript

is used to denote quantities in the interior fluid, so that if λ= µi/µ is the ratio of
interior to exterior viscosity, the momentum and continuity equations for the interior
fluid are

∇pi = λ∇2ui , ∇ · ui = 0. (4.2)

The boundary conditions on the interface S now include continuity of velocity

u = ui , (4.3)

and the continuity of stress boundary condition (2.3) generalizes to become

(pi − p)n + 2(e − λei) · n = σ (κθ + κz)n − ∇sσ. (4.4)

In cylindrical-polar coordinates, with radial and axial velocity components u and
v, the Stokes equations and the incompressibility condition in the thread region
0 < r̃ < R̃(z, t) are

λ

ε

[
1

r̃

∂

∂r̃

(
r̃
∂vi

∂r̃

)
+ ε2 ∂2vi

∂z2

]
=

∂p̃i

∂z
, (4.5)

λ

[
1

r̃

∂

∂r̃

(
r̃
∂ui

∂r̃

)
− 1

r̃2
ui + ε2 ∂2ui

∂z2

]
=

∂p̃i

∂r̃
, (4.6)

ε
∂vi

∂z
+

1

r̃

∂

∂r̃
(r̃ui) = 0, (4.7)

while in the outer fluid, r > εR̃(z, t), they are

1

r

∂

∂r

(
r
∂v

∂r

)
+

∂2v

∂z2
=

∂p

∂z
, (4.8)

1

r

∂

∂r

(
r
∂u

∂r

)
− 1

r2
u +

∂2u

∂z2
=

∂p

∂r
, (4.9)

∂v

∂z
+

1

r

∂

∂r
(ru) = 0. (4.10)

The boundary conditions at infinity are

u, v → 0, p → 0 as r → ∞. (4.11)

The tangential and normal components of the stress balance (4.4) on r = εR̃ are

2

1 + ε2R̃
′2

[
εR̃′ ∂u

∂r
+ 1

2
(1 − ε2R̃′2)

(
∂u

∂z
+

∂v

∂r

)
− εR̃′ ∂v

∂z

]

− 2λ

1 + ε2R̃
′2

[
εR̃′ ∂ui

∂r
+ 1

2
(1 − ε2R̃′2)

(
∂ui

∂z
+

∂vi

∂r

)
− εR̃′ ∂vi

∂z

]
= − σ ′

√
(1 + ε2R̃′2)

,

(4.12)
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and

p̃i − 2ελ

1 + ε2R̃′2

[
∂ui

∂r
− εR̃′

(
∂ui

∂z
+

∂vi

∂r

)
+ ε2R̃′2 ∂vi

∂z

]

− εp +
2ε

1 + ε2R̃′2

[
∂u

∂r
− εR̃′

(
∂u

∂z
+

∂v

∂r

)
+ ε2R̃′2 ∂v

∂z

]

=
σ

R̃
√

(1 + ε2R̃′2)

[
1 − ε2R̃R̃′′

(1 + ε2R̃′2)

]
. (4.13)

Here and elsewhere a prime denotes a partial derivative with respect to z. The surface
tension σ is given by the nonlinear equation of state (2.5).

The surfactant evolution equation (2.6) takes the form

∂Γ

∂t
+

1

R̃
√

(1 + ε2R̃′2)

∂

∂z

[
R̃Γ

√
(1 + ε2R̃′2)

(εuR̃′ + v)

]
− ε2R′

1 + ε2R′2
∂R̃

∂t

∂Γ

∂z

+
Γ (u − εR̃′v)

εR̃(1 + ε2R̃′2)

[
1 − ε2R̃R̃′′

1 + ε2R̃′2

]
=

1

Pes

[
1

R̃
√

(1 + ε2R̃′2)

∂

∂z

(
R̃

√
(1 + ε2R̃′2)

∂Γ

∂z

)]
,

(4.14)

on r = εR̃, where the coordinate α of (2.6) has been set to α = z and now the surface
Péclet number Pes = σ0l/Dsµ.

The kinematic condition is

u = ε(R̃t + vR̃′) on r = εR̃, (4.15)

while continuity of velocity is unchanged from (4.3). Conservation of the thread
volume (2.7) and of the total amount of surfactant (2.8) are written in non-dimensional
form as ∫ 1

−1

R̃2 dz = 2, (4.16)∫ 1

−1

Γ R̃
√

(1 + ε2R̃′2) dz = χ, (4.17)

where we recall that χ = Γi/Γ∞.
Below, we derive asymptotic equations describing the evolution in the limit of small

ε.

4.1. Flow outside the thread

Evolution of the thread surface is accompanied by a flow in the exterior fluid.
Following, for example, Acrivos & Lo (1978) and Buckmaster (1972), we describe the
flow by introducing point forces or Stokeslets, with distribution f ez, and point mass
sources, with distribution g, along the thread axis r = 0 for −∞ <z < ∞. In terms of
these distributions,

u = r(I1,3(f ) + I0,3(g)), (4.18)

v = I0,1(f ) + I2,3(f ) + I1,3(g), (4.19)

p = 2I1,3(f ), (4.20)

where Im,n(φ) =

∫ ∞

−∞
φ(ξ )

(z − ξ )m

(r2 + (z − ξ )2)n/2
dξ. (4.21)
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We require that
∫ 1

−1
f dz =

∫ 1

−1
g dz = 0, since there is no net force acting on the

thread and no net mass source inside it, respectively. Expressions (4.18)–(4.21) provide
an exact solution of the Stokes equations (4.8)–(4.10) and the far-field condition (4.11)
for r � εR̃(z, t).

The problem is now to find Stokeslet and mass source distributions f and g, the
components of the velocity inside the thread ui and vi , and the surfactant con-
centration Γ , or equivalently the surface tension, such that the boundary conditions
are satisfied to leading order in ε on the free interface. The components of the
velocity gradient are given by differentiating equations (4.18) and (4.19), and are

∂u

∂r
= I1,3(f ) − 3r2I1,5(f ) + I0,3(g) − 3r2I0,5(g), (4.22)

∂u

∂z
= r(I0,3(f ) − 3I2,5(f ) − 3I1,5(g)), (4.23)

∂v

∂r
= −r(I0,3(f ) + 3I2,5(f ) + 3I1,5(g)), (4.24)

∂v

∂z
= I1,3(f ) − 3I3,5(f ) + I0,3(g) − 3I2,5(g). (4.25)

To find exterior flow quantities on the interface in terms of f and g, the dominant
contribution of the integral Im,n(·) is required for r = εR̃ and z in the principal period
[−1, 1], which is calculated as follows. First, decompose

Im,n(φ) =

∫ d

−d

φ(ξ )
(z − ξ )m

(r2 + (z − ξ )2)n/2
dξ + Jm,n(φ), (4.26)

where Jm,n(φ) denotes the contribution to Im,n from integrating over the region
ξ ∈ (−∞, −d) ∪ (d, ∞), for any d > 1. The intervals of integration in (4.26) are chosen
so that Jm,n has a bounded integrand when r → 0 for z ∈ [−1, 1]. Convergence of the
infinite integral Jm,n for n � m+2 follows from the ξm−n decay of the integrand, while
convergence of the infinite integrals J0,1(φ) and J2,3(φ) is demonstrated by assuming
that φ has a primitive Φ , which must be bounded in view of the periodicity of φ and

the identity
∫ 1

−1
φ dξ = 0. Therefore, integration by parts can be employed to rewrite

J0,1(φ) and J2,3(φ) in terms of an infinite integral with ξ−2 decay of the integrand,
from which their convergence follows. Now, since each Jm,n has a bounded integrand,
it represents an at most O(φ) contribution to Im,n, and this is found to be of higher
order than the contribution from the first term on the right-hand side of (4.26). The
expansion of this first integral term in (4.26) is performed following the procedure
given by Handelsman & Keller (1967) and Hinch (1991). A summary is given in
Booty & Siegel (2005).

When the dominant part of each expansion is included, the exterior fluid velocities,
pressure and velocity gradient evaluated on the interface r = εR̃ are given by

∂u

∂r
= −2 ln(1/ε)f ′(z) − 2g(z)

ε2R̃2
+ · · · , (4.27)

∂u

∂z
+

∂v

∂r
= −4f

εR̃
+

4g′

εR̃
+ · · · , (4.28)

∂v

∂z
= 4 ln(1/ε)f ′(z) − 2 ln(1/ε)g′′ + · · · , (4.29)

u = −2ε ln(1/ε)f ′R̃ +
2g

εR̃
+ · · · , (4.30)
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v = 4 ln(1/ε)f − 2 ln(1/ε)g′ + . . . , (4.31)

p = −4 ln(1/ε)f ′ + · · · . (4.32)

Here and elsewhere, an ellipsis denotes terms in an expansion that are of higher order.

4.2. Flow inside the thread and the model equations

The interior pressure p̃i and its derivative p̃′
i are O(1) when the scales for capillary-

driven flow defined above (4.1) are used. Inspection of the axial momentum equation
(4.5) then shows that Poiseuille flow or plug flow ensues in the thread interior if,
respectively,

λ

ε
vi ∼ 1 or

λ

ε
vi  1. (4.33)

Here we consider the Poiseuille flow scaling (4.33a), which applies for an inviscid or
nearly inviscid interior fluid. In this case, the continuity equation (4.7) implies that

ui ∼ ε2

λ
. (4.34)

Estimates are applied to the boundary conditions to determine scalings for the
other dependent variables. Consider first the tangential stress balance (4.12). We use
the scalings (4.33a) and (4.34) and recall that ∂/∂r ∼ 1/ε for thread quantities (i.e.
with subscript i) to deduce that the largest term within the second pair of square
brackets in (4.12) is λ(∂vi/∂r), which is O(1). The leading-order contribution from
external flow quantities is determined from (4.27)–(4.29), from which we find that the
tangential stress balance takes the form

4

{
− f

εR̃
+

g′

εR̃
− gR̃′

εR̃2
+ · · ·

}
− λ

{
∂vi

∂r
+ · · ·

}
= −σ ′ + · · · . (4.35)

Continuity of the radial and axial components of velocity implies, via (4.30)–(4.31),
that on S

ui |S = −2ε ln
1

ε
f ′R̃ +

2g

εR̃
+ · · · (4.36)

vi |S = 4 ln
1

ε
f − 2 ln

1

ε
g′ + · · · , (4.37)

If we now recall that inside the thread ui ∼ ε2/λ and vi ∼ ε/λ, then inspection of
(4.35)–(4.36) shows that a consistent scaling is to set f, g ∼ ε for a balance in (4.35),
and λ ∼ ε2 for a balance in (4.36). The axial velocity vi is then O(1/ε) inside the
thread, while (4.37) implies that at this leading order the profile for vi is zero on
the interface S, where in fact vi |S = O(ε ln(1/ε)). We therefore introduce order-one
quantities λ0, f0, g0, vi0, etc. such that

λ = ε2λ0 + · · · , f = εf0 + · · · , g = εg0 + · · · , (4.38)

vi =
1

ε
vi0 + · · · , ui = ui0 + · · · , p̃i = pi0 + · · · , (4.39)

Γ = Γ0 + · · · , σ = σ0 + · · · , R̃ = R0 + · · · . (4.40)

Inside the thread region, the leading-order problem yields lubrication-type
equations. Specifically, from (4.6) we have

∂pi0

∂r̃
= 0, (4.41)
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so that pi0 = pi0(z, t). Equations (4.5) and (4.7) then imply, respectively,

λ0

r̃

∂

∂r̃

(
r̃
∂vi0

∂r̃

)
=

∂pi0

∂z
,

∂vi0

∂z
+

1

r̃

∂

∂r̃
(r̃ui0) = 0. (4.42)

The solution that is bounded at r̃ = 0 is

λ0vi0 =
r̃2p′

i0

4
+ B(z, t), (4.43)

λ0ui0 = − r̃3p′′
i0

16
− r̃B ′(z, t)

2
, (4.44)

where we have introduced the function of integration B(z, t), which is to be
determined.

The relations (4.27)–(4.32) and (4.43)–(4.44) together with the scalings (4.38)–(4.40)
are now used to satisfy the conditions of continuity of velocity and stress across the
interface.

Continuity of axial velocity implies, via (4.37) and (4.43), that on S

vi0|S =
1

λ0

(
R2

0p
′
i0

4
+ B

)
= O

(
ε2 ln

1

ε

)
, (4.45)

so that

B = −R2
0p

′
i0

4
. (4.46)

When this expression for B is used, continuity of radial velocity implies, via (4.36)
and (4.44), that on S

ui0|S =
1

16λ0R0

(
R4

0p
′
i0

)′
=

2g0

R0

. (4.47)

In the kinematic condition (4.15), since ui |S is O(1) we introduce a rescaled time τ

such that

t = ετ, (4.48)

where τ is an order-one quantity, so that to leading order, the kinematic condition
becomes

dR0

dτ
= ui0|S =

2g0

R0

. (4.49)

The normal viscous stress is dominated by the external velocity gradient ∂u/∂r ∼
−2εg0/r2, which, from (4.13) balances the internal and capillary pressure, to give the
normal stress balance

pi0 − 4g0

R2
0

=
σ0

R0

. (4.50)

Substituting (4.43) for the internal axial velocity into (4.35) we find that the leading-
order tangential stress balance is given by

−4f0

R0

+
4g′

0

R0

− 4g0R
′
0

R2
0

− 1
2
R0p

′
i0 = −σ ′

0. (4.51)

An evolution equation for R0 is found by eliminating g0 between the kinematic
condition (4.49) and the normal stress balance (4.50), to give

∂R0

∂τ
=

R0

2

(
pi0 − σ0

R0

)
, (4.52)
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while an equation for pi0 is found by eliminating g0 between the expression (4.47) for
continuity of radial velocity and (4.50) for the normal stress balance, namely

1

8R0

(R4
0p

′
i0)

′ = λ0(pi0R0 − σ0). (4.53)

Equations (4.52) and (4.53) govern the leading-order evolution of the thread when
the spatial distribution of surfactant Γ0, or equivalently σ0, is known.

An equation for the evolution of Γ is derived from (2.6) and its expression in
cylindrical coordinates (4.14). With the rescaled time τ of (4.48) and scalings (4.39)–
(4.40), the nearly radial collapse of the external fluid implies that the transport terms
on the left-hand side of (2.6) are approximated by Γ (κθ + κz)u · n � Γ0ui0|S/εR0.
Use of the kinematic condition (4.49) then gives the leading-order expression for
conservation of surfactant,

∂Γ0

∂τ
+

Γ0

R0

∂R0

∂τ
=

1

Pe0

1

R0

∂

∂z

(
R0

∂Γ0

∂z

)
, (4.54)

where we have introduced a rescaled Péclet number Pe0 = Pes/ε. This is appended
by an equation of state, such as the Langmuir equation (2.5)

σ0 = 1 + E ln(1 − Γ0). (4.55)

The closed system of equations (4.52)–(4.55) for the evolution of R0, pi0, Γ0 and σ0 is
the main result of this section.

We note that the relation for the tangential stress balance (4.51) determines the
Stokeslet density f0(z, t) once the solution of the system (4.52)–(4.55) is known, where
from (4.49), g0 = R0∂τR0/2, and in this sense the tangential stress balance decouples
from the system. In particular, the decoupling implies that the Marangoni term (i.e.
the right-hand side of (4.51)) does not enter into the leading-order dynamics for the
evolution of the thread, although the Marangoni term would appear in higher-order
corrections to the dynamics and, as an expression for f0(z, t), (4.51) would be needed
to find the small O(ε ln(1/ε)) axial velocity and pressure of the exterior flow, if
required.

We also emphasize the result that inside the thread the velocity profile is of Poiseuille
type, with leading-order axial component at order O(1/ε) given from (4.39), (4.43)
and (4.46) by

vi =
p′

i0

4ελ0

(r̃2 − R2
0) + · · · , (4.56)

which vanishes on the interface r̃ =R0. Outside but near the thread, the state of
nearly radial collapse and dilation is seen from (4.18), (4.30) and (4.38), which show
that the radial velocity is given by u ∼ 2εg0/r , which is O(1) on and within an
ε-neighbourhood of the interface, while the axial velocity in the same region is small
and, from (4.31) and (4.38), O(ε ln(1/ε)). The motion of fluid points on the thread
surface is thus purely radial to leading order in ε. These features predicted by the
long-wave dynamics are validated by the direct numerical simulations, which are
revisited in § 6.

We conclude this section with some remarks. First, for λ0 > 0, the evolution
equations (4.52) to (4.55) conserve the thread volume and total amount of surfactant
automatically. Conservation of volume follows from (4.52) and (4.53), which give

d

dτ

∫ 1

−1

R2
0 dz =

∫ 1

−1

R0(pi0R0 − σ0) dz =

∫ 1

−1

1

8λ0

(
R4

0p
′
i0

)′
dz = 0, (4.57)
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by periodicity. Similarly, from (4.54), it follows that

d

dτ

∫ 1

−1

Γ0R0 dz = 0, (4.58)

which is the leading-order statement of conservation of surfactant per (4.17). The

requirement that
∫ 1

−1
g0 dz =0 follows immediately from (4.47), and the requirement

that
∫ 1

−1
f0 dz = 0 follows on eliminating σ0 between (4.50) and (4.51) to find that

f0 = 1/8(R2
0pi0)

′.
Secondly, we find that with no surface diffusion of surfactant, Pe0 = ∞, (4.54)

implies that

∂

∂τ
(Γ0R0) = 0, (4.59)

so that,

Γ0 =
C(z)

R0

, (4.60)

where C(z) is a time-independent function determined by the initial conditions.
Equation (4.60) implies that for a thread to pinch-off at a point, Γ0 must tend to
infinity there. However, prior to this singularity in Γ0 developing, the surface tension
becomes sufficiently small that the equation of state is no longer valid, and additional
effects such as surfactant solubility and micelle formation, which are neglected here,
become important. In the numerical study of § 5, we see that a thread coated with
an insoluble diffusion-free surfactant that evolves according to the leading-order
long-wave equations is such that R0 remains bounded away from zero.

4.2.1. The limit of an inviscid thread (λ0 = 0)

An important special case is that of an inviscid thread, for which λ0 = 0. Letting
λ0 → 0 in (4.53) gives

1

8R0

(
R4

0p
′
i0

)′
= 0, (4.61)

which implies that p′
i0 = γ (t)/R4

0 where γ (t) is a function of time alone. A further
integration over z ∈ [−1, 1] and periodicity of the boundary conditions implies that
the function γ (t) vanishes, so that pi0 = pi0(t), independent of z. However, (4.53) then
implies no further information about the evolution of the interior pressure.

In the inviscid limit, a separate relation that determines the interior pressure must
be found, and it is obtained from the condition of volume conservation (4.16). The

time-derivative of (4.16) implies that
∫ 1

−1
R0∂τR0 dz = 0, and together with (4.52), the

fact that pi0 is independent of z, and a further use of (4.16), this gives the result

pi0 =
1

2

∫ 1

−1

σ0R0 dz. (4.62)

4.2.2. Linear stability

In this subsection we compare the linearized behaviour of the long-wave equations
with that of the governing equations in the Stokes flow limit. Specifically, we consider
the linear stability of a disturbance to an initially cylindrical thread coated with a
uniform distribution of insoluble surfactant, surrounded by a viscous fluid. For small
perturbations from an equilibrium surfactant concentration Γi , the equation of state
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(2.5) or (4.55) can be approximated by

σ = σi − E0

Γ − Γi

Γi

, (4.63)

where σi = σ (Γi) and E0 = −(∂σ/∂Γ )|Γi
Γi . It is convenient to rescale the surface

tension by σi and the surfactant concentration by Γi , so that the dimensionless
surface tension becomes

σ = 1 − βΓ̃ , (4.64)

where Γ̃ = (Γ − Γi)/Γi and β = E0/σi . Note that for a surfactant-free interface β = 0.
The linearized version of the long-wave equations (4.52) to (4.55) about the uniform

state with R0 = 1 and pi0 = 1, admits normal mode solutions proportional to eikz+ωt

with growth rate ω given by

ω(k) =
k2

4(8λ0 + k2)

{
(1 − β) − 2

Pe0

(8λ0 + k2)

±
[
(1 − β)2 +

4

Pe0

(1 + β)(8λ0 + k2) +
4

Pe2
0

(8λ0 + k2)2
]1/2

}
, (4.65)

where k is the wavenumber made dimensionless by the thread half-length l. For a
diffusion-free surfactant Pe0 = ∞, and the two roots of the dispersion relation simplify
to

ω(k) = 0, ω(k) =
(1 − β)k2

2(8λ0 + k2)
, (4.66)

that is, there is one marginally stable branch and one branch that is unstable (stable)
when β < 1 (β > 1). In contrast, when Pe0 < ∞, (4.65) has a stable and an unstable
branch for each k.

A comprehensive linear stability analysis of a viscous filament surrounded by
another viscous fluid in the presence of soluble surfactant has been given by Hansen
et al. (1999). Equation (5.3) of that paper gives a characteristic equation for linear
disturbances to a uniform state in the limit of zero Reynolds number. When we take
the limit of zero bulk diffusivity, corresponding to insoluble surfactant, and express
the equation in terms of the dimensionless parameters defined in § 4, it takes the form

ω

{
(λ − 1)[G2(k̃) − 1 − k̃2]k̃F ′(k̃) + λ(λ − 1)[F 2(k̃) − 1 − k̃2]k̃G′(k̃)

+ λ[G(k̃) + F (k̃)]2 +
β

2

(
ω +

k̃2

PeH

)−1

(1 + k̃2)
[
λk̃G′(k̃) + k̃F ′(k̃)

]}

=
(1 − k̃2)

2

[
λk̃G′(k̃) + k̃F ′(k̃) +

β

2

(
ω +

k̃2

PeH

)−1

k̃G′(k̃)k̃F ′(k̃)

]
. (4.67)

Here, k̃ is the wavenumber based on the thread radius, F (k̃) = k̃I0(k̃)/I1(k̃),
G(k̃) = k̃K0(k̃)/K1(k̃) and In and Kn are modified Bessel functions of the first and
second kind (of order n).

A straightforward but lengthy calculation, putting k̃ = εk, PeH = ε2Pe0 and λ= ε2λ0

in (4.67), verifies that the roots of the long-wave model (4.65) are the same as those
of the characteristic equation (4.67) at leading order in ε, with a difference that is
O(ε2 ln(1/ε)).
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Figure 7. Numerical solutions of the long-wave equations with λ0 = 0 and Pe0 = ∞. (a)
Evolution of a clean interface shown for t = 0 and from t = 1.55 to t = 3.05 in increments
of 	t = 0.15. (b) Evolution of an interface coated with an initially uniform distribution of
diffusion-free insoluble surfactant with Γi = 0.4, shown for t = 0 and from t = 4 to t = 12 in
increments of 	t = 1. The dashed curve denotes the initial profile.

5. Numerical solution of the long-wave model
The long-wave model given by (4.52) – (4.55) is found to capture the essential

features of the collapse of a prestretched bubble, including the formation of a quasi-
steady thin thread, as is shown by the results of the model’s numerical solution
described in this section. The model also provides insight into the dominant physical
mechanisms that are responsible for thin thread formation, the large-time occurrence
of a constriction at the thread ends, and the evolution toward pinch-off of the
interface.

Equations (4.52)–(4.55) are solved using a finite-difference method. The initial data
are chosen to be similar to those of the direct numerical simulations of § 3, for which
the initial profile is shown in figures 1(a) and 2. For example, as in § 3, the initial
surfactant concentration is uniform with Γi = 0.4 and the elasticity number is E =0.19.
The zero-subscript on the dependent variables R, pi, Γ and σ of the long-wave model

are now omitted, and the initial profile is given by R(z, 0) = a −
√

2(1 − a2) cos πz

with a =0.9888 to give a profile that is reminiscent of the dumb-bell shaped bubble of
figure 1(a) up to its maximum radius, and where the coefficient multiplying the cosine
term is determined from the volume constraint (4.16). The initial pressure pi(z, 0)
then follows from (4.53) when the viscosity ratio λ0 > 0 and from (4.62) when λ0 = 0.

The thread volume and the total amount of surfactant over a spatial period
z ∈ [−1, 1], which are conserved quantities proportional to the integrals on the left-
hand sides of (4.57) and (4.58), are monitored as a check on the simulations, and
remain within 10−5 to 10−6 of their initial values.

5.1. The inviscid limit (λ0 = 0)

Figure 7 compares the evolution predicted by the long-wave equations for a clean
interface and one that contains an initially uniform distribution of insoluble surfactant
that is diffusion free (Pe0 = ∞).

The main features of the evolution are very similar to those displayed in the direct
numerical simulations of § 3. For the clean interface shown in figure 7(a), the minimum
or neck radius at z = 0 decreases monotonically in time, and the thread pinches off at
z = 0 with a locally parabolic minimum, as is seen in the direct numerical simulation
shown in figure 1.
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Figure 8. (a) Surfactant concentration Γ (z, t) plotted at the same sequence of times as in
figure 7(b). (b) Comparison of ε-scaled thread radius R(z, t) at z = 0 for a clean interface
(dashed curve) with a surfactant coated interface (solid curve).

Figure 7(b) shows the evolution of the ε-scaled profile R(z, t) when the interface
is coated with a spatially uniform distribution of insoluble surfactant at t = 0. This
shows a similar evolution to that of the direct numerical simulations of § 3.2, that is,
the profile first contracts radially to form a neck centred at z =0 and subsequently
forms an elongated thread that connects parent bubbles centred at z = ± 1. The
distribution of surfactant Γ at the same sequence of times is shown in figure 8(a).
Figure 8(b) shows the radius R(0, t) versus time. The evolution is initially close to
that of the clean surface but at time t � 3.0, the decrease in the neck radius R(0, t)
is suddenly interrupted when the local decrease in area of the interface causes the
surfactant concentration to approach its maximum value, and the data show that
the neck radius remains almost steady thereafter. The surface tension σ on the thin
thread is between 0.15 and 0.22.

The capillary pressure pc = σ/R balances the internal pressure pi on the developing
thin thread, and from (4.52) this part of the surface is stationary, which is in agreement
with thread formation observed in the direct numerical simulations of § 3.2.

When Pe0 = ∞, (4.54) simplifies to (4.59), so that Γ R is a function of z alone,
independent of t . The initially uniform surfactant distribution Γi and almost uniform
final surfactant distribution on the thin thread (figure 8a), imply that in the steady
state the thin thread profile R(z) is proportional to the initial profile R(z, 0). This
imprint of the initial profile causes the concave upward shape of the steady thin
thread in figure 7(b). In contrast, the simulations of § 3.2 for the same parameter
values and initial surfactant concentration show a thread radius that decreases or
constricts where the ends of the thread join the parent bubbles. This is seen in the
data of figure 2 and was noted in the discussion of figure 4(b). This suggests that
effects that are neglected in the leading-order long-wave equations, such as Marangoni
stress and axial flow, decrease the accumulation of surfactant near the thread ends
and facilitate the formation of constrictions. Surface diffusion of surfactant is an
alternative mechanism that moderates localized accumulation of surfactant at the
thread ends, and can readily be included in the long-wave model. In the next section,
we investigate the effect of surface diffusion on a developing thread, and find that it
leads to constrictions similar to those just described.

5.1.1. The influence of surface diffusion

Surface diffusion of surfactant is often neglected since its diffusivity is typically
small. Consider a surfactant with a representative diffusivity Ds = 10−5 cm2 s−1 added
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Figure 9. Long-wave evolution of a thread coated with surfactant that diffuses on its surface,
with (a) Pe0 = 200, (b) Pe0 = 50, (c) Pe0 = 10. The interfacial profiles are shown at t = 0 and
from t = 2 to t = 12 in increments of 	t =1 in (a), t = 2.62 to t = 8.2 in increments of 	t = 0.62
in (b), and t = 1.4 to t = 3.2 in increments of 	t = 0.2 in (c).

to glycerine with a clean surface tension in air of 63 dyn cm−1 and a viscosity of
14.9 dyn s cm−2, so that the velocity scale U = σ0/µ is of the order of 1 cms−1. Then,
assuming a length scale of 10−1 to 1 cm, the Péclet number Pes is in the range from
104 to 105. However, diffusive flux of surfactant has an effect on thread evolution,
producing constrictions at the thread ends that are analogous to those observed in
figure 2 and which eventually shrink to zero radius and pinch off.

For example, the evolution of a thread with the same initial data and parameter
values as in figure 7(b), but with scaled Péclet number Pe0 = 200, 50 and 10 is
shown in figures 9(a) to (c), respectively. For Pe0 = 200 and 50 in figures 9(a) and
9(b), the early evolution of the interface is similar to the diffusion-free case, with
a fast radial collapse of an initial parabolic minimum followed by the formation
of a thin thread in which the interior pressure and capillary pressure are equal.
However, as the thread elongates, constrictions form at the thread ends and mark the
onset of pinch-off. On the other hand, in figure 9(c), diffusion of surfactant is suffi-
ciently large that the evolution closely resembles that of the clean or surfactant-free
case.

The diffusive flux of surfactant on the thin thread of figures 9(a) and 9(b) is
non-negligible only in a neighbourhood of the thread ends and on the parent bubble
surface, as indicated in close-up in figure 10. The thread between the parent bubbles
and away from its minimum radius is steady, as is shown in figure 9 and in greater
detail in figure 10, and is concave downward, i.e. with constrictions at the thread ends.

This shape is a necessary consequence of the long-wave equations in the presence
of surface diffusion. On steady parts of an interface, (4.54) simplifies to

∂2Γ

∂z2
+

1

R

∂R

∂z

∂Γ

∂z
= 0. (5.1)

Since λ0 = 0 and pi = pi(t), differentiation of the steady version of (4.52) with respect
to z gives

pi

∂R

∂z
=

∂σ

∂Γ

∂Γ

∂z
, (5.2)

which, since pi > 0 and ∂Γ σ < 0, implies that ∂zR∂zΓ � 0 and hence from (5.1) that
∂2

z Γ0 � 0. Differentiating (5.2) with respect to z and recalling from the equation
of state that ∂2

Γ σ < 0 then implies that ∂2
z R � 0 on steady parts of the thread.
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Figure 10. Close-up of the region where the thin thread of figure 9(a) connects to the parent
bubble, indicating the formation of a constriction, for Pe0 = 200. Shown are surface velocity
∂tR, radius R, surface tension σ , and −Γ ′ which is proportional to the diffusive flux of the
surfactant.

Consequently, a non-uniform steady thread necessarily has a concave downward or
spindle shape, as is observed for the thin thread in figures 9(a) and 9(b).

The surface tension σ is small in a neighbourhood of the constriction at the thread
ends (see figure 10), and this brings into question the validity of the Langmuir equation
of state in describing details of pinch-off. To model the equation of state for fluid
systems at very high surfactant concentrations, as referred to in the discussion below
(2.5), we have repeated the simulations of figures 9(a) and 9(b) with the modified
equation of state

σ = max(1 + E ln(1 − Γ ), 0.1) . (5.3)

As time proceeds, the lower bound on σ is first reached at the thin thread ends, where
the surface tension is smallest. Thereafter, there is no qualitative difference in the
evolution, but only a small, almost imperceptible, quantitative difference just before
pinch-off. However, it is possible to prescribe initial conditions, parameter values and
the lower bound so that the bound is first reached at the thread midpoint or neck
z = 0, in which case the interface pinches off there without first forming a thin thread.

5.2. A slightly viscous thread (λ0 > 0)

The evolution of a clean or surfactant-free interface for a slightly viscous thread
with λ= ε2λ0 has been thoroughly investigated in Sierou & Lister (2003), and here
we summarize the main results. Figure 11(a) shows that the evolution of a clean
surface when λ0 > 0 is qualitatively similar to that when λ0 = 0 only at sufficiently
early times. The surface initially forms a minimum or neck at z = 0 which collapses
radially; however, after some time, the velocity of the neck slows and subsequently

changes sign, so that R(0, t) increases for t
>∼ 4.8. At this instant, there is a change

in morphology from one to two minima, which are symmetric about z = 0 and
simultaneously move toward the thread axis while translating away from z = 0. For
a clean or surfactant-free interface, pinch-off occurs at finite time with a double-cone
shape in the neighbourhood of a pinch point, as shown by a long-wave model and by
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Figure 11. Numerical solutions of the long-wave equations for λ0 = 1. The dotted line shows
the initial interface profile. (a) Surfactant-free evolution; profiles are shown for t =0 and from
t = 4.2 to t = 7.8 in increments of 	t =0.3, indicating that pinch-off first occurs near z = ± 0.5
at the connection to the parent bubbles. (b) Evolution of the same initial profile coated with a
uniform distribution of diffusion-free surfactant, with Γi = 0.2 and E = 0.19, showing a single
satellite bubble separated from parent bubbles by quasi-steady thin threads. Times are t = 0
and from t = 6 to t = 14 in increments of 	t =1.

similarity solutions of Stokes equations, without the approximations of the long-wave
model, there being good quantitative agreement between the two approaches for
sufficiently small λ (Sierou & Lister 2003).

An example of the evolution of a slightly viscous thread that is coated with
diffusion-free insoluble surfactant is given in figure 11(b). The figure shows the
interface r = R(z, t) at a sequence of times for the same initial data as in figures 7(b)
and 8, but with λ0 = 1 and Γi = 0.2. The interface initially evolves as in the clean case,
with a single neck at z = 0 that later divides into a symmetric pair of minima. However,
as for an inviscid thread, the influence of surfactant is to interrupt the decrease in
neck radius when the local interior pressure and capillary pressure balance, cf. (4.52),
and a quasi-steady thin thread that connects a central satellite bubble forms along
the axis of symmetry. In contrast to the inviscid case, satellite bubbles form owing to
the spatial dependence of pi , as specified by (4.53).

The additional effect of surface diffusion is illustrated in figure 12(a), which shows
the profile r = R(z, t) at a sequence of times using the same initial data as in
figure 11(b), but with Pe0 = 200. Figure 12(b) shows the corresponding surfactant
concentration. As in the inviscid case, the diffusive flux of the surfactant is seen
to promote the formation of constrictions at the ends of a steady thread, where
it now joins either parent or satellite bubbles. The interface in figure 12(a) is first
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Figure 12. Numerical solution of the long-wave equations for λ0 = 1, Pe0 = 200, E = 0.19 and
Γi = 0.2, plotted at t = 0 (dotted line) and from t = 6.3 to t = 13.3 in increments of 0.5. (a)
Interface profiles R(z, t) indicating pinch-off first occurs near z = ± 0.1, away from the parent
bubbles. (b) The corresponding surfactant concentration Γ (z, t).

driven toward pinch-off at the point where the thread connects to the central satellite
bubble rather than at the connection to the main parent bubbles as was found in the
surfactant-free case of figure 11(a).

The result of (5.1) and (5.2), that the spindle shape of a steady thread is a necessary
consequence of surface diffusion, extends to the case of a slightly viscous interior
fluid provided p′

i = 0 at some point of it. This follows from (4.52) and (4.53), which
imply that on intervals in z where the thread is steady, (R4p′

i)
′ = 0 for all λ0 > 0 and

hence R4p′
i is constant. Provided that p′

i = 0 at some point of the steady thread, such
as near its mid-point, p′

i =0 at all points along it, and the result then follows from
the same reasoning as in the inviscid limit.

6. Numerical simulations revisited
A surprising prediction of the long-wave model is that since the Marangoni term,

which appears in the tangential stress balance, decouples from the leading-order
equations (4.52) to (4.55), the Marangoni stress is of reduced importance during the
evolution of a slender bubble, and in particular in the formation of a thin quasi-steady
thread. This prediction is examined in figure 13, which compares the evolution of a
stretched bubble via direct numerical simulation with the Marangoni term included
(dashed curve) and excluded or set to zero (solid curve), using similar initial data
and the same parameter values as in the simulation of figure 2. The evolution is
similar at early times in both cases, and, in particular, both show the formation of
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Figure 13. (a) Computed bubble profiles r =R(z, t) both with (dashed curve) and without
(solid curve) the Marangoni term. (b) Close-up of interface near the thread ends where
the thread connects to the parent bubble, showing increased constriction in the presence of
Marangoni stress.
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Figure 14. Spatial distribution of quantities from simulation of thread formation with initial
surfactant coverage Γi = 0.8. Shown with the bubble profile r = R(z, t) at t = 11 are: the surface
tension gradient dσ/ds, the tangential velocity u · t , and the bubble contraction rate ∂R/∂t ,
scaled by suitable multiplying factors, as indicated. (i) dσ/ds; (ii) R(z); (iii) 10∂R/∂t; (iv) 40ut .

a persistent thin thread. However, the close-up of figure 13(b) shows that inclusion
of the Marangoni stress has promoted the formation of a constriction at the thread
ends, at which pinch-off will occur at some instant soon after that shown, whereas
in the absence of Marangoni stress the constriction is absent and, with no surface
diffusion, the profile shown is very near a final steady-state.

The above considerations motivate us to re-examine the dynamics in the neigh-
bourhood of the constriction as the interface evolves according to the Navier–Stokes
equations (2.1)–(2.7). A related investigation of the role of surfactant on thread
evolution for a viscous thread in a passive surrounding is given by McGough &
Basaran (2006). To facilitate the investigation here, the initial surfactant concentration
is increased to Γi =0.8, with the same initial bubble profile and other parameters as
in § 3. The data in figure 14 show that away from the constriction at the thread
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end, the thread surface is essentially steady and has a concave down or spindle-end
shape. These features are reminiscent of the solution of the long-wave equations in
the presence of surface diffusion of surfactant, see figure 9 and the discussion at (5.1)
and (5.2). Figure 14 also shows that the tangential fluid velocity evaluated on the
bubble surface and the Marangoni stress are largest in a localized neighbourhood of
the constriction. This shows that either of these physical effects, both of which are
neglected in the leading-order long-wave equations, act to sweep surfactant from the
thread ends and onto the parent bubble in a manner analogous to the action of surface
diffusion, thereby promoting pinch-off of the thread at its ends. A possible mechanism
for the slow decrease in radius of the constriction is as follows: its axial propoagation
rate ż is approximately given by ż = ∂tR/R′, where ∂tR follows approximately the
same evolution for each slice of the thread. Since R′ on the parent bubble adjacent to
the constriction increases with time, ż decreases with time. This gives more time for
diffusion or Marangoni-induced flow to smooth the thread-drop surfactant gradient
and reduce the effect of surfactant build-up at the constriction.† We expect that the
effects of Marangoni stress and tangential velocity on the interface can be investigated
by including higher-order terms in the long-wave model, but do not pursue this here.

Figure 15 shows simulation data for a range of different initial values of surfactant
concentration Γi and illustrates the influence this has on thread formation. The same
initial bubble shape as in § 3 is adopted, see figure 1(a), with other parameter values
as in figures 2 to 5.

During the initial stage of evolution, bubble contraction in the vicinity of z =0
occurs, with an increase in local surfactant concentration due to the decrease in surface
area. However, the greater the initial surfactant concentration, the more readily the
capillary pressure approaches the interior pressure, so that the quasi-steady thread
radius is seen in figure 15(a, b) to be larger at increased initial concentration Γi . The
surface tension shown in figure 15(c) is 0.2 or larger on the thin thread, except at the
constrictions. The corresponding surfactant distribution is shown in figure 15(d).

7. Conclusion
Novel bubble dynamics, such as tip-streaming in an extensional flow, and drag

enhancement in an axisymmetric translational flow is often associated with the
influence of surfactant. Here, we have investigated the evolution toward pinch-off of
a slender, axisymmetric prestretched bubble with insoluble surfactant in a quiescent
flow. The results of direct numerical simulation for an inviscid bubble show that in
contrast to the surfactant-free or clean case, in which the bubble pinches off with a
parabolic profile at the same location as a minimum of the initial radius, the influence
of the surfactant is to interrupt the event of pinch-off when the minimum radius is
a fraction of its initial value. The radius at interruption varies with the amount of
surfactant present at the initial instant, Γi , from about 35% of its initial value when
Γi � 0.4 to 50% at Γi � 0.6 (see figure 15a). Instead of pinch-off, a thin quasi-steady
thread develops, centred on this location and with a near-constant radius, and then
elongates until its aspect ratio is approximately 0.035–0.07 when it separates two
distinct parent bubbles at its ends. The presence of singular terms near pinch-off in
an axisymmetric geometry, for example, the capillary pressure σ/R, implies a loss of
accuracy in the computations when the radius is less than 10−3 − 10−4.

† We thank a referee for pointing this out.
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Figure 15. Evolution for different values of the initial surfactant coverage Γi: Γi = 0.4 (solid
line), Γi = 0.5 (dotted line), Γi = 0.6 (dashed line), Γi =0.7 (dash-dotted line). (a) Thread radius
R(0, t) at z = 0 versus time t . (b) Bubble profile r = R(z, t) at large time, equal to the latest
time shown for each Γ0 in (a). (c) Surface tension σ (z, t) at the same large time. (d) Surfactant
concentration Γ (z, t) at the same large time.

The direct numerical simulations are augmented by a long-wave asymptotic model
for the evolution of a thread. The code used for the direct numerical simulations in this
paper does not include non-zero viscosity of the interior fluid. The influence of interior
viscosity can, however, readily be incorporated into a long-wave asymptotic model
in the zero-Reynolds-number or Stokes-flow limit, and this identifies the dominant
physical mechanisms responsible for the thread’s formation and evolution.

Unlike previous examples (Pawar & Stebe 1996; Eggleton, Pawar & Stebe 1999;
Wang, Papageorgiou & Maldarelli 1999; Booty & Siegel 2005; Li 2006) in which
Marangoni stress is essential to novel surfactant-induced dynamics, surfactant-
induced thread formation in the process of bubble contraction is due primarily
to normal stress-balance and is therefore not a consequence of Marangoni stress.
This is illustrated by both direct numerical simulation and the longwave asymptotic
model, which shows that Marangoni stress does not play a role in the leading-
order dynamics of thread formation. During the evolution, surfactant concentration



Influence of surfactant on bubble deformation and breakup 337

increases, owing to the contraction or decrease in local surface area of the bubble
interface, thereby reducing surface tension and establishing a near-balance between
the capillary pressure and internal bubble pressure. This results in the formation of
a quasi-steady thin thread, which then elongates to join a pair of slowly contracting
parent bubbles.

In the direct numerical simulations, the elongating thread develops a spindle shape
or constricts at its ends where it joins the parent bubbles. The high concentration of
surfactant on the thread and relatively low concentration on the adjacent parent
bubble imply the presence of a Marangoni stress that is localized about the
constriction at the thread end and is accompanied by a surface-tangential velocity.
The tangential velocity gives rise to localized advection of surfactant from the thread,
with its high surfactant concentration, to the parent bubble, with its relatively low
surfactant concentration. As surfactant leaves the end of the thread and enters the
parent bubble surface, the radius at the end of the thread decreases to establish a
balance between capillary and internal pressure. This is the mechanism that leads
to the formation of a constriction between the end of the thread and the parent
bubble, and while the thread elongates and the radius at the constriction decreases,
the remainder of the thread remains in quasi-steady equilibrium. This Marangoni
stress-induced surfactant transport from the thread end to the parent bubble causes
the constriction to decrease until the thread is eventually driven to pinch-off there.

In the absence of Marangoni stress and tangential surface velocity, both of which
are shown in § 4 to be higher-order effects in the long-wave model, surface diffusion of
surfactant can also lead to the development of a spindle-shaped thread and eventual
pinch-off at its ends provided the diffusivity is sufficiently small but non-zero. We
therefore conclude that pinch-off at the end of an inviscid thread is unavoidable
in the presence of surfactant transport away from the thread, whether it occurs by
Marangoni-induced advection or surface diffusion.

When the interior fluid has small but non-zero viscosity, the long-wave model
indicates that the quasi-steady thread is punctuated by satellite bubbles that can
form along its length. The quasi-steady portions of the slender thread can then first
approach pinch-off adjacent to a satellite bubble instead of a parent bubble.

It is important to note the different role played by surfactant in the evolution
toward pinch-off of a thread as the viscosity ratio λ= µi/µ varies from the small
values considered here to larger values. Timmermans & Lister (2002) derive a long-
wave model for a viscous thread with λ= ∞ in a passive surrounding, and show that
in the absence of surface diffusion it predicts that the extensional flow away from
the point of pinch-off advects surfactant away from the region, with the result that
surfactant has a negligible effect on the dynamics close to pinch-off. The different
behaviour found here is due mainly to the difference in the form of the lubrication-type
velocity profile within the thread. When λ  1 or λ= ∞, the thread velocity profile
is plug-like, so that the axial flow near pinch-off causes a tangential velocity at the
interface that is of the same magnitude as the flow at all points across the thread. On
the other hand, when λ � 1, the profile is of Poiseuille type, so that near pinch-off the
axial flow is greatest on the thread axis and is small at the interface, thereby relegating
the role of advection of surfactant along the interface and away from the pinch-off
region to higher order. More precisely, we find that with the scaling λ ∼ ε2, when
the radial velocity at the interface is O(1) the axial velocity is small, O(ε ln(1/ε)),
and the leading-order long-wave model predicts that the surfactant concentration
becomes sufficiently large that the surface tension is greatly reduced as pinch-off
occurs.
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